[1]
Bhat V, Welin E R, Guo X L, Stoltz B M. Advances in stereoconvergent catalysis from 2005 to 2015: Transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations[J]. Chem. Rev.,
2017, 117(5):
4528-4561.
[2]
Ahmad I, Shagufta , AlMallah A R. Advances in asymmetric oxidative kinetic resolution of racemic secondary alcohols catalyzed by chiral Mn(Ⅲ) salen complexes[J]. Chirality,
2017, 29(12):
798-810.
[3]
Zelewsky A V. Stereochemistry of coordination compounds[J]. From Alfred Werner to the 21st century. Chimia,
2014, 68(5):
297.
[4]
Chen L A, Xu W C, Huang B, Ma J J, Wang L, Xi J W, Harms K, Gong L, Meggers E. Asymmetric catalysis with an inert chiral-at-metal iridium complex[J]. J. Am. Chem. Soc.,
2013, 135(29):
10598-10601.
[5]
Chen L A, Tang X J, Xi J W, Xu W C, Gong L, Meggers E. Chiral-atmetal octahedral iridium catalyst for the asymmetric construction of an all - carbon quaternary stereocenter[J]. Angew. Chem.,
2013, 52(52):
14021-14025.
[6]
Zheng Y, Tan Y Q, Harms K, Marsch M, Riedel R, Zhang L L, Meggers E. Octahedral ruthenium complex with exclusive metal-centered chirality for highly effective asymmetric catalysis[J]. J. Am.Chem. Soc.,
2017, 139(12):
4322-4325.
[7]
Cruchter T, Medvedev M G, Shen X D, Mietke T, Harms K, Marsch M, Meggers E. Asymmetric nucleophilic catalysis with an octahedral chiral-at-metal iridium(Ⅲ) complex[J]. ACS Catal.,
2017, 7(8):
5151-5162.
[8]
Ghosh S K, Ganzmann C, Bhuvanesh N, Gladysz G A. Werner com-plexes with ω-dimethylaminoalkyl substituted ethylenediamine ligands: Bifunctional hydrogen - bond - donor catalysts for highly enantioselective michael additions[J]. Angew. Chem. Int. Ed.,
2016, 55(13):
4356-4360.
[9]
Ehnbom A, Ghosh S K, Lewis K G, Gladysz G A. Octahedral Werner complexes with substituted ethylenediamine ligands: A stereochemical primer for a historic series of compounds now emerging as a modern family of catalysts[J]. Chem. Soc. Rev.,
2016, 45(24):
6799-6811.
[10]
Ma J J, Ding X B, Hu Y, Huang Y, Gong L, Meggers E. Metal-templated chiral Brønsted base organocatalysis[J]. Nat. Commun.,
2014, 5(1):
4531.
[11]
Huo H H, Fu C, Wang C Y, Harms K, Meggers E. Metal-templated enantioselective enamine/H - bonding dual activation catalysis[J]. Chem. Commun.,
2014, 50(72):
10409-10411.
[12]
Cruchter T, Larionov V A. Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands[J]. Coord.Chem. Rev.,
2018, 376:
95-113.
[13]
Zhang L L, Meggers E. Stereogenic-only-at-metal asymmetric catalysts[J]. Chem. Asian J.,
2017, 12(18):
2335-2342.
[14]
Constable E C. Stereogenic metal centres—From Werner to supramolecular chemistry[J]. Chem. Soc. Rev.,
2013, 42(4):
1637-1651.
[15]
Meggers E. Asymmetric synthesis of octahedral coordination complexes[J]. Eur. J. Inorg. Chem.,
2011, (19):
2911-2926.
[16]
Chen C T, Tsai C C, Tsou P K, Huang G T, Yu C H. Enantiodivergent Steglich rearrangement of O-carboxylazlactones catalyzed by a chirality switchable helicene containing a 4-aminopyridine unit[J]. Chem. Sci.,
2017, 8(1):
524-529.
[17]
Nicolaou K C, Liu G D, Beabout K, McCurry M D, Shamoo Y. Asymmetric alkylation of anthrones, enantioselective total synthesis of(-)-and (+)-viridicatumtoxins B and analogues thereof: Absolute configuration and potent antibacterial agents[J]. J. Am. Chem. Soc.,
2017, 139(10):
3736-3746.
[18]
Zelewsky A V, Mamula O. The bright future of stereoselective synthesis of co - ordination compounds[J]. J. Chem. Soc. - Dalton Trans.,
2000, (3):
219-231.
[19]
Mürner H, Belser P, Zelewsky A V. New configurationally stable chiral building blocks for polynuclear coordination compounds: Ru(chiragen[X])Cl2.[J]. J. Am. Chem. Soc.,
1996, 118(34):
7989-7994.
[20]
Mürner H, Zelewsky A V, Stoeckli-Evans H. Octahedral complexes with predetermined helical chirality: Xylene-bridged bis([4, 5] -pineno-2, 2'-bipyridine) ligands (chiragen[o-, m-, p-xyl]) with ruthenium(Ⅱ)[J]. Inorg. Chem.,
1996, 35(13):
3931-3935.
[21]
Zelewsky A V. Stereoselective synthesis of coordination compounds[J]. Coord. Chem. Rev.,
1999, 190:
811-825.
[22]
Gong L, Chen L A, Meggers E. Asymmetric catalysis mediated by the ligand sphere of octahedral chiral - at - metal complexes[J]. Angew. Chem. Int. Ed.,
2014, 53(41):
10868-10874.
[23]
Luo S, Zhang X, Zheng Y, Harms K, Zhang L L, Meggers E. Enantioselective alkynylation of aromatic aldehydes catalyzed by a sterically highly demanding chiral - at - rhodium Lewis acid[J]. J. Org. Chem.,
2017, 82(17):
8995-9005.
[24]
Chavarot M, Ménage S, Hamelin O, Charnay F, Pécaut J, Fontecave M. "Chiral-at-metal"octahedral ruthenium(Ⅱ) complexes with achiral ligands: A new type of enantioselective catalyst[J]. Inorg. Chem.,
2003, 42(16):
4810-4816.
[25]
Hamelin O, Rimboud M, Pécaut J, Fontecave M. Chiral - at - metal ruthenium complex as a metalloligand for asymmetric catalysis[J]. Inorg. Chem.,
2007, 46(13):
5354-5360.
[26]
Ganzmann C, Gladysz J A. Phase transfer of enantiopure Werner cations into organic solvents: An overlooked family of chiral hydrogen bond donors for enantioselective catalysis[J]. Chem. - Eur. J.,
2008, 14(18):
5397-5400.
[27]
Zhang L L, Meggers E. Steering asymmetric Lewis acid catalysis exclusively with octahedral metal - centered chirality[J]. Acc. Chem.Res.,
2017, 50(2):
320-330.
[28]
Shen X D, Huo H H, Wang C Y, Zhang B, Harms K, Meggers E. Octahedral chiral - at - metal iridium catalysts: Versatile chiral lewis acids for asymmetric conjugate additions[J]. Chem. - Eur. J.,
2015, 21(27):
9720-9726.
[29]
Wang C Y, Chen L A, Huo H H, Shen X D, Harms K, Gong L, Meggers E. Asymmetric Lewis acid catalysis directed by octahedral rhodium centrochirality[J]. Chem. Sci.,
2015, 6(2):
1094-1100.
[30]
Tan Y Q, Yuan W, Gong L, Meggers E. Aerobic asymmetric dehydrogenative cross-coupling between two Csp3—H groups catalyzed by a chiral-at-metal rhodium complex[J]. Angew. Chem.,
2015, 54(44):
13045-13048.
[31]
Xu W C, Arieno M, Loew H, Huang K F, Xie X L, Cruchter T, Ma Q, Xi J W, Huang B, Wiest O, Gong L, Meggers E. Metal - templated design: Enantioselective hydrogen - bond - driven catalysis requiring only parts-per-million catalyst loading[J]. J. Am. Chem. Soc.,
2016, 138(28):
8774-8780.
[32]
Wang C Y, Zheng Y, Huo H H, Röse P, Zhang L L, Harms K, Hilt G, Meggers E. Merger of visible light induced oxidation and enantioselective alkylation with a chiral iridium catalyst[J]. Chem. - Eur. J.,
2015, 21(20):
7355-7359.
[33]
Huo H H, Wang C Y, Harms K, Meggers E. Enantioselective, catalytic trichloromethylation through visible-light-activated photoredox catalysis with a chiral iridium complex[J]. J. Am. Chem. Soc.,
2015, 137(30):
9551-9554.
[34]
Wang C Y, Qin J, Shen X D, Riedel R, Harms K, Meggers E. Asymmetric radical-radical cross-coupling through visible-light-activated iridium catalysis[J]. Angew. Chem.,
2016, 55(2):
685-688.
[35]
Meggers E, Huo H H, Huang X Q, Shen X D, Harms K. Visible-lightactivated enantioselective perfluoroalkylation with a chiral iridium photoredox catalyst[J]. Synlett,
2016, 27(5):
749-753.
[36]
Tian C, Gong L, Meggers E. Chiral - at - metal iridium complex for efficient enantioselective transfer hydrogenation of ketones[J]. Chem.Commun.,
2016, 52(22):
4207-4210.
[37]
Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson M E. Synthesis and characterization of phosphorescent cyclometalated iridium complexes[J]. Inorg. Chem.,
2001, 40(7):
1704-1711.
[38]
Coe B J, Glenwright S J. Trans-effects in octahedral transition metal complexes[J]. Coord. Chem. Rev.,
2000, 203(1):
5-80.
[39]
Xu G Q, Liang H, Fang J, Jia Z L, Chen J Q, Xu P F. Catalytic enantioselective α-fluorination of 2-acyl imidazoles via iridium complexes[J]. Chem. Asian J.,
2016, 11(23):
3355-3358.
[40]
Shen X D, Harms K, Marsch M, Meggers E. A rhodium catalyst superior to iridium congeners for enantioselective radical amination activated by visible light[J]. Chem.-Eur. J.,
2016, 22(27):
9102-9105.
[41]
Zhou Z J, Li Y J, Gong L, Meggers E. Enantioselective 2-alkylation of 3-substituted indoles with dual chiral lewis acid/hydrogen-bondmediated catalyst[J]. Org. Lett.,
2017, 19(1):
222-225.
[42]
Zhou Z J, Chen S M, Hong Y B, Winterling E, Tan Y Q, Hemming M, Harms K, Houk K N, Meggers E. Non- C2-symmetric chiral-atruthenium catalyst for highly efficient enantioselective intramolecular C(sp3)—H amidation[J]. J. Am. Chem. Soc.,
2019, 141(48):
19048-19057.
[43]
Winterling E, Ivlev S, Meggers E. Chiral-at-ruthenium catalysts with mixed normal and abnormal N - heterocyclic carbene ligands[J]. Organometallics,
2021, 40(8):
1148-1155.
[44]
Han F, Choi P H, Ye C X, Grell Y, Xie X L, Ivlev S I, Chen S M, Meggers E. Cyclometalated chiral-at-ruthenium catalyst for enantioselective ring-closing C(sp3)—H carbene insertion to access chiral flavanones[J]. ACS Catal.,
2022, 12(16):
10304-10312.
[45]
Ye C X, Meggers E. Chiral-at-ruthenium catalysts for nitrene-mediated asymmetric C—H functionalizations[J]. Acc. Chem. Res.,
2023, 56(9):
1128-1141.
[46]
Nicewicz D A, MacMillan D W C. Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes[J]. Science,
2008, 322(5898):
77-80.
[47]
Nagib D A, Scott M E, MacMillan D W C. Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis[J]. J. Am. Chem. Soc.,
2009, 131(31):
10875.
[48]
Shaw M H, Twilton J, MacMillan D W C. Photoredox catalysis in organic chemistry[J]. J. Org. Chem.,
2016, 81(16):
6898-6926.
[49]
Kärkäs M D, Porco J A, Stephenson C R J. Photochemical approaches to complex chemotypes: Applications in natural product synthesis[J]. Chem. Rev.,
2016, 116(17):
9683-9747.
[50]
Ravelli D, Protti S, Fagnoni M. Carbon - carbon bond forming reactions via photogenerated intermediates[J]. Chem. Rev.,
2016, 116(17):
9850-9913.
[51]
Skubi K L, Blum T R, Yoon T P. Dual catalysis strategies in photochemical synthesis[J]. Chem. Rev.,
2016, 116(17):
10035-10074.
[52]
Romero N A, Nicewicz D A. Organic photoredox catalysis[J]. Chem.Rev.,
2016, 116(17):
10075-10166.
[53]
Huo H H, Shen X D, Wang C Y, Zhang L L, Röse P, Chen L A, Harms K, Marsch M, Hilt G, Meggers E. Asymmetric photoredox transition-metal catalysis activated by visible light[J]. Nature,
2014, 515(7525):
100-103.
[54]
Meggers E. Exploiting octahedral stereocenters: From enzyme inhibition to asymmetric photoredox catalysis[J]. Angew. Chem. Int. Ed.,
2017, 56(21):
5668-5675.
[55]
Zheng C, You S L. Transfer hydrogenation with Hantzsch esters and related organic hydride donors[J]. Chem. Soc. Rev.,
2012, 41(6):
2498-2518.
[56]
You S L. Recent developments in asymmetric transfer hydrogenation with Hantzsch esters: A biomimetic approach[J]. Chem. Asian J.,
2007, 2(7):
820-827.
[57]
Skubi K L, Kidd J B, Jung H, Guzei I A, Baik M H, Yoon T P. Enantioselective excited-state photoreactions controlled by a chiral hydrogen - bonding iridium sensitizer[J]. J. Am. Chem. Soc.,
2017, 139(47):
17186-17192.
[58]
Zheng J, Swords W B, Jung H, Skubi K L, Kidd J B, Meyer G J, Baik M H, Yoon T P. Enantioselective intermolecular excited-state photoreactions using a chiral Ir triplet sensitizer: Separating association from energy transfer in asymmetric photocatalysis[J]. J. Am. Chem.Soc.,
2019, 141(34):
13625-13634.
[59]
Kurono N, Arai K, Uemura M, Ohkuma T. [Ru(phgly)2(binap)] /Li2CO3: A highly active, robust, and enantioselective catalyst for the cyanosilylation of aldehydes.[J]. Angew. Chem. Int. Ed.,
2008, 47(35):
6643-6646.
[60]
Kurono N, Nii N, Sakaguchi Y, Uemura M, Ohkuma T. Asymmetric hydrocyanation of α, β - unsaturated ketones into β - cyano ketones with the [Ru(phgly)2(binap)] /C6H5OLi catalyst system[J]. Angew. Chem.Int. Ed.,
2011, 50(24):
5541-5544.
[61]
Kurono N, Yoshikawa T, Yamasaki M, Ohkuma T. Enantioselective hydrocyanation of aldehydes catalyzed by [Li{Ru(phgly)2(binap)}] X(X=Cl, Br)[J]. Org. Lett.,
2011, 13(5):
1254-1257.
[62]
Xu W C, Shen X, Ma Q, Gong L, Meggers E. Restricted conformation of a hydrogen bond mediated catalyst enables the highly efficient enantioselective construction of an all - carbon quaternary stereocenter[J]. ACS Catal.,
2016, 6(11):
7641-7646.
[63]
Fujita M, Oguro D, Miyazawa M, Oka H, Yamaguchi K, Ogura K. Self - assembly of ten molecules into nanometre - sized organic host frameworks[J]. Nature,
1995, 378(6556):
469-471.
[64]
Fujita M. Metal-directed self-assembly of two-and three-dimensional synthetic receptors[J]. Chem. Soc. Rev.,
1998, 27(6):
417-425.
[65]
Olenyuk B, Whiteford J A, Fechtenkötter A, Stang P J. Self-assembly of nanoscale cuboctahedra by coordination chemistry[J]. Nature,
1999, 398(6730):
796-799.
[66]
Guo J, Xu Y W, Li K, Xiao L M, Chen S, Wu K, Chen X D, Fan Y Z, Liu J M, Su C Y. Regio- and enantioselective photodimerization within the confined space of a homochiral ruthenium/palladium heterometallic coordination cage[J]. Angew. Chem. Int. Ed.,
2017, 56(14):
3852-3856.
[67]
Schotes C, Mezzetti A. Asymmetric Diels-Alder reactions of unsaturated β-ketoesters catalyzed by chiral ruthenium PNNP complexes[J]. J. Am. Chem. Soc.,
2010, 132(11):
3652-3653.
[68]
Hartung J, Dornan P K, Grubbs R H. Enantioselective olefin metathesis with cyclometalated ruthenium complexes[J]. J. Am. Chem. Soc.,
2014, 136(37):
13029-13037.
[69]
Guo J, Fan Y Z, Lu Y L, Zheng S P, Su C Y. Visible-light photocatalysis of asymmetric [2+2] cycloaddition in cage -confined nanospace merging chirality with triplet-state photosensitization[J]. Angew. Chem. Int. Ed.,
2020, 59(22):
8661-8669.
[70]
Girvin Z C, Cotter L F, Yoon H, Chapman S J, Mayer J M, Yoon T P, Miller S J. Asymmetric photochemical[2+2] -cycloaddition of acyclic vinylpyridines through ternary complex formation and an uncontrolled sensitization mechanism[J]. J. Am. Chem. Soc.,
2022, 144(43):
20109-20117.
[71]
Salomó E, Gallen A, Sciortino G, Ujaque G, Grabulosa A, Lledós A, Riera A, Verdaguer X. Direct asymmetric hydrogenation of N-methyl and N-alkyl imines with an Ir(Ⅲ)H catalyst[J]. J. Am. Chem. Soc.,
2018, 140(49):
16967-16970.